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1 Introduction

Much of the discussion of supersymmetry breaking in the Minimal Supersymmetric Stan-

dard Model (MSSM) (and its generalizations) has been in the context of global supersym-

metry. However it is well-known that in order to have a zero (or nearly zero) cosmological

constant it is necessary to incorporate supergravity (SUGRA) effects. This is usually

done by introducing a constant into the superpotential. The supergravity potential, unlike

the globally supersymmetric one, is not positive definite and one can in principle use the

constant to tune the cosmological constant (CC) to zero. But once it is admitted that

a consistent theory needs to bring in supergravity effects, one needs to account for the

potential effects of quadratic sensitivity to high scale physics of the low energy supersym-

metry breaking parameters. Furthermore one has to consider effects of the additional fields

(moduli) that are neutral under the standard model group but are essential ingredients in

any consistent supergravity such as string theory.1

The moduli that occur in any string theory construction need to be stabilized, and in

the recent literature there has been much discussion of how this may be done, particularly

in the context of type IIB string theory.2 In general one can find minima for the moduli

sector potential which break supersymmetry. In fact generic minima would be expected to

1For reviews of the MSSM, SUSY breaking mechanisms and phenomenological SUGRA, see for exam-

ple [36–38].
2For reviews see [39, 40].
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have supersymmetry breaking at the natural scale of the theory - namely the string scale.

Nevertheless it is possible to find non-generic points in this landscape which have a low

or intermediate scale of supersymmetry breaking. If supersymmetry is to be relevant for

phenomenology, the starting point of any string theory construction would have to be one

of these points. In the following we will work with type IIB theory since in many respects

this is the best understood, and we assume that such points exist with the MSSM living

on some brane configuration. However we expect that similar arguments can be made

in other string theory contexts, and we suspect that the phenomenology (assuming the

relevant existence theorems can be established) is not likely to be very different since our

arguments rest on some general features of the string theory input such as the tendency to

have a ‘no-scale’ starting point at the classical level.

We work with κ2 = 8πGN = M−2
P = 1. A general supergravity theory has a real

analytic Kaehler potential K = K(Φ, Φ̄) and a holomorphic superpotential W (Φ) where

Φ = {ΦA}, A = 1, . . . , N , is the set of chiral scalar fields of the theory. The metric on field

space is KAB̄ = ∂A∂B̄K and the metric on the gauge group (which is in general a chiral

function of the neutral chiral superfields) is fab(Φ).

The embedding of a supersymmetry breaking theory in supergravity brings in ad-

ditional effects that are not usually considered in the literature. The coefficient of the

term that is quadratic in the cutoff in the one loop effective potential, is proportional to

StrM2(Φ) ≡ ∑

J(−1)2J (2J + 1)trM2(Φ), where Φ is the set of chiral (super) fields in the

theory and M2 is the field dependent mass squared matrix. In a globally supersymmetric

theory (even if the supersymmetry is spontaneously broken) this supertrace is zero and one

has no quadratic divergence in the quantum theory. However in a SUGRA theory whose

supersymmetry is spontaneously broken this supertrace does not vanish. Instead we have3

StrM2(Φ) = (N − 1)m2
3/2(Φ) − FA(Φ)(RAB̄ + FAB̄)(Φ, Φ̄)F̄ B̄(Φ̄), (1.1)

where

RAB̄ = ∂A∂B̄ ln det KCD̄, FAB̄ = −∂A∂B̄ ln detℜfab, (1.2)

and FA is the F-term of the chiral multiplet ΦA and m2
3/2(Φ) = eK |W |2 is the field

dependent gravitino mass.

Let the indices I, J, . . . denote fields of the visible (MSSM) sector and i, j, . . . denote

(closed string) moduli fields. Typically they are expected to get vaccum expectation values

(vevs) of the order of the Planck scale or larger. Let the total number of such chiral

superfields in the visible sector be Nv. Note that this number is taken to include GUT fields

if any. In gauge mediated supersymmetry breaking (GMSB) models (for a review see [1])

there is a (gauge neutral) hidden sector which breaks supersymmetry that is distinct from

the moduli sector. Let us denote the fields of this intermediate sector by indices r, s, . . ..

In our string theory context they could be open string moduli. In addition such models

have a messenger sector which couples to this hidden sector and is charged under the gauge

group and since these are expected to have only negligible F-terms we will denote them

by the same indices as the MSSM fields. The distinction between these sectors may be

3See for example [2, 19].
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understood in terms of the general formula [2] for the (unnormalized) soft mass terms in

the visible sector,

∆M2
IJ̄ = −RIJ̄kl̄F

kF l̄ − RIJ̄rs̄F
rF s̄ − RIJ̄KL̄FKF L̄ +

1

3
FIFJ̄ + KIJ̄m2

3/2. (1.3)

(Note for simplicity of exposition we have ignored mixed terms such as RIJ̄kL̄F kF L̄ above).

The right hand side of this equation is to be evaluated at the minimum of the scalar

potential. The general formula for the F-term is

F̄ Ā = eK/2KĀBDBW = eK/2KĀB(∂BW + KBW ). (1.4)

The different mechanisms and mediations may be distinguished in terms of the two physical

scales MP (≃ 1018GeV ) → 1 and the weak scale G
−1/2
F (≃ 100GeV ) → 10−16. Now the F-

terms of the visible sector fields F I are at most of the order of the squared Higgs vacuum

expectation value (vev) or the Higgs vev times the gravitino mass i.e. ∼ 10−30 or 10−15m3/2

(whichever is larger). On the other hand tuning the cosmological constant to zero implies

FAF̄ B̄KAB̄ − 3m2
3/2 = 0. (1.5)

This means that (given that the Kaehler metric is positive definite) |FA| . m3/2. Now

clearly the fourth term of (1.3) is much smaller (by a factor of 10−30) than m2
3/2 and so

can be ignored (unless m3/2 < 10−30 (∼ 10−6eV ) which we assume is not the case.

The first term in (1.3) is the classical contribution of the moduli which typically take

Planck scale expectation values. In string theory for instance, in order for the four di-

mensional low energy approximation to be valid, these moduli must typically take values

which are somewhat larger than the Planck scale. The curvature is of order one or less on

the Planck scale so that the contribution of this term to the squared soft mass is at most

O(m2
3/2). This is called the moduli mediated (MMSB) contribution.

The second term can come from some hidden sector field (open string modulus) which

acquires an F-term as in GMSB. As argued earlier all F-terms are . O(m3/2). Classically

the corresponding moduli space curvature is at most order one (and typically in models

it is either zero or highly suppressed) and so this contribution would not dominate over

the classical contribution from the (closed string) moduli sector. However there are wave

function renormalization effects which effectively enhance loop effects since the moduli

space curvature goes like φ−1 where φ is the lowest component of some scalar field. Thus

the contribution of this to the soft mass is effectively like |ǫFφ/φ|2 (where ǫ = g2/16π2

with g a gauge coupling). This would be enhanced over the MMSB contribution if the

potential is such that φ, the hidden sector SUSY breaking field in GMSB, has a vev which

is significantly smaller than the Planck scale (which could be the case for open string

moduli). One does not really need sequestering in this case for the GMSB contribution

to dominate the modulus contribution - all that is needed is that Fφ ≤ F ≤ (10−8)2

and φ . 10−3. The former inequality follows from (1.5) and the fact that any classical

contribution to the soft masses from MMSB will be of order m3/2 which should therefore

be taken to be O(10−16) ∼ 102GeV , while the latter is required so that the O(α/4π)

– 3 –
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suppression in the flavor conserving GMSB contribution is compensated. However this

gives a GMSB contribution at the same level as the MMSB contribution. So unless MMSB

already has suppressed FCNC (in which case there is no need for any GMSB mechanism)

we need to suppress the gravitino mass well beyond the usual MMSB value. Thus in typical

GMSB models one has Fφ ∼ (109GeV )2 or less and φ ∼ 1013GeV or less with a gravitino

mass (which in effect would be the size of possibly FCNC violating MMSB contributions)

of around a few GeV or less.

The third mechanism is usually called anomaly mediated supersymmetry breaking

(AMSB) [3–5] and is supposedly associated with Weyl (or conformal) anomalies in super-

gravity. As discussed in [6] (based on the work of [7]) this actually consists of two different

contributions. One of them arises from the Weyl anomaly of the theory. This effect will

be present even in the absence of matter fields - for example in supergravity coupled to

super-Yang-Mills fields. In addition there is a contribution that arises from the mechanism

pointed out by Dine and Seiberg [7] which in fact has nothing to do with Weyl anomalies.

This is like GMSB in that the contribution to the soft masses arises from a quantum effect,

but instead of having an intermediate scale sector as in GMSB, it relies on the fact that the

Higgs field acquires a non-zero vev in the physical vacuum. This in turn leads to an F-term

for the Higgses of the form FH ∼ m3/2H. Now given that the classical contribution to the

curvature is O(1) or less, this gives a negligible contribution to the soft masses. However

there is a quantum contribution which gives a moduli space curvature of the form R ∼
ǫ2/H2, giving a squared soft mass of O(ǫ2m2

3/2). But this is usually much smaller than the

contribution from MMSB and so the latter must be suppressed, i.e. the classical moduli con-

tribution to SUSY breaking must be sequestered [3], unless its FCNC effects are negligible.

In this paper we will discuss a class of models which contain the minimal inputs that are

necessary to have soft supersymmetry breaking terms in the MSSM, are consistent with the

suppression of flavor violating terms, and which can be embedded in a supergravity/string

theoretic framework. In section 2 we discuss the hidden sector which is responsible for

supersymmetry breaking. This is the closed string moduli sector of the theory. Obviously

we cannot start with a generic point on the landscape of string solutions since this will

not have the tiny cosmological constant that is observed. Also it will most probably have

large (i.e. string scale or Kaluza-Klein scale) supersymmetry breaking, so that we would

certainly not be led to the MSSM, which in this bottom up approach is our starting point.

Thus we need to be restricted to those points in the landscape which have a nearly zero

cosmological constant and low energy supersymmetry breaking. We focus on those models

where this happens in the simplest possible way. We will consider a moduli sector breaking

supersymmetry in such a way that it is not directly passed on to the visible sector at the

classical level. At one loop level there are quadratic divergences (with a cutoff that we will

identify with the GUT/KK scale). This requires the retuning of the cosmological constant

and it gives a flavor diagonal contribution to the soft supersymmetry breaking parameters

that is proportional to Λ2

16π2 m2
3/2. In general however there is a FCNC violating term which

needs to be suppressed by fine tuning the fluxes in an appropriate manner. In effect this

is a derivation of a quantum version of the mSUGRA model. In addition to this there

is the mechanism identified in [6, 7] which replaces what is usually presented as anomaly

– 4 –
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mediated supersymmetry breaking (AMSB). Thus the basic claim of this paper is that the

simplest model of supersymmetry breaking that is consistent with all constraints (both

theoretical and phenomenological) and which is independent of ad hoc uplift terms, is a

version of mSUGRA which comes from an high energy quantum effect, plus the low-energy

quantum effect identified in [6, 7].

2 The model

The moduli sector is taken to come from type IIB compactified on a Calabi-Yau orien-

tifold [8, 9] with the visible sector being on a set of D3 branes. While a detailed con-

struction of such a model is not yet available it is very plausible that one exists. Indeed

it is likely that our arguments here apply to a whole class of such models since only very

generic properties of such a construction are used. For simplicity we consider a model with

just one Kaehler modulus T but a large number h21 & O(102) of complex structure moduli

zα, but it should be clear from the discussion that an extension to compactifications with

several Kaehler moduli is straightforward. Also to stabilize the T modulus we will need

non-perturbative terms as in KKLT [9].

The MSSM sector will have (schematically) quark/lepton SU(2) doublet superfields

denoted by Qi/Li and the corresponding singlet conjugate fields U ci Dci, Eci with i being

a family index. The Higgs fields are Hu, Hd. For the Kaehler potential we take

K = −3 ln(T + T̄ − (HuH̄u + HdH̄d + zQ
IJ̄

QIQ̄J̄ + (xIJQIQJ + h.c.))

− ln(S + S̄) − ln k(z, z̄) (2.1)

= Kmod + Z(T )IJ̄ΦIΦJ̄ +
1

2
(XIJΦIΦJ + h.c.) + · · · (2.2)

Kmod = −3 ln(T + T̄ ) − ln(S + S̄) − ln k(z, z̄), ZIJ̄ =
3zIJ̄

T + T̄
, XIJ =

3xIJ

T + T̄
. (2.3)

In the above ΦI , I = 1, . . . Nv denotes all the visible sector fields. Note that in this model

the space of dilaton-axion S and the complex structure moduli z̄α, and the space T,ΦI

are not direct product spaces and the metric is not a direct sum of the metrics on these

two spaces since xIJ is in general a function of the complex structure moduli, though it

vanishes when zα = 0 [10]. Also the form given in the first line of (2.1) is valid only to

linear order in the zα. While many authors (see for example [11–13]) use a direct sum

form for the Kaehler potential in the presence of D3 branes, this is only true if the complex

structure moduli and the dilaton are frozen at zero.

For the moduli superpotential we have

Wmod = Wflux(S, z) +
∑

n

An(S, z)e−anT , (2.4)

while for the MSSM superpotential we take

WMSSM = µ̃HuHd + yuijQ
iHuU cj + yDijQ

iHdD
cj + yEijL

iHdE
cj. (2.5)

In the above S is the dilaton-axion superfield and z = {zα}, (α = 1, . . . , h21) denotes the set

of complex structure moduli and T is the Kaehler modulus of some Calabi-Yau orientifold

– 5 –
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(with h11 = 1) compactification of type IIB string theory. The first term in (2.4) comes from

internal magnetic fluxes and the second is a series of non-perturbative (NP) terms coming

from condensing gauge groups associated with D7-branes [8, 9]. Also the MSSM sector

is located on a stack of D3 branes. For details of the dependence of this superpotential

on the closed string moduli see [10, 14]. The model has a R-parity symmetry under

Φ(θ) → ±Φ(−θ) with the plus sign for the Higgses and minus sign for quark and lepton

superfields. There is also a PQ symmetry (if the µ-term is set to zero) with charges

PQ : Q = L = U c = Dc = Lc = −1

2
, Hu = Hd = 1. (2.6)

and all moduli having zero charge. The moduli potential is

Vmod =
1

k(z, z̄)(S + S̄)(T + T̄ )2

{

1

3
(T + T̄ )|∂T Wmod|2 − 2ℜ∂T WmodW̄mod

}

+|FS |2KSS̄ + F zF z̄kzz̄. (2.7)

Now if one ignores quantum corrections, one would want to look for a local minimum of

this potential with zero cosmological constant (CC) and SUSY breaking only in the T

direction,4 i.e.

Vmod|0 = 0, F |S0 = F z|0 = 0, F T |0 6= 0. (2.8)

There is certainly no obstruction to finding such a minimum and with a sufficient number

of complex structure moduli and non-perturbative terms it is reasonable to expect that

such a SUSY breaking minimum exists. However the T modulus - the scalar partner of

the Goldstino - has zero mass if the CC is fine-tuned exactly to zero. It should be stressed

though that this does not imply that this modulus is not stabilized, since we have included

the non-perturbative terms which are explicitly T dependent. In other words the equation

∂T V = 0 will have a non-trivial solution because of the first term of (2.7).5

In fact however as we will see in the next section the quantum corrections would have

required us to re-fine-tune the CC if we had started with a zero value for it. So anticipating

this what we really have to do is to start at the classical level by fine-tuning the CC to be

a small (actually negative) value - much smaller, in absolute value, than m2
3/2. In this case

there is certainly no obstruction to having positive non-zero (squared) masses for all the

moduli. Also there will be additional contributions to the masses of the visible sparticles,

from the quantum corrections. In fact the sort of minimum we will start with is like the

4One could of course look for more general minima where the SUSY breaking is shared amongst all the

moduli. However in practice in all models discussed so far one usually looks for minima in which one starts

from the no-scale potential where FT 6= 0, but the other F-terms are zero and then expect the addition of

the non-perturbative (NP) terms that fix the T-modulus not to change this situation very much, at least

for large volume compactifications (see for example [15]). Of course in the original toy model of KKLT

FT = 0, but this was a result of ignoring the non-trivial effects of the other moduli, which really cannot be

frozen in the presence of the NP terms. See [41] for a discussion of these issues.
5The necessary conditions for stability in SUGRA models coming from string theory were first discussed

in [30] and were generalized by Gómez-Reino et al. [42–44].
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one analyzed in the large volume scenario of [15].6 The only difference is that unlike in

that case we have to fine-tune Wflux at the minimum (by adjusting the fluxes) to a very

small value, in order to get an intermediate volume scenario with the volume of the internal

manifold V ∼ T 3/2 ∼ 103. We need this to preserve a field theoretic description up to the

unifcation scale (which will be identified with the cut-off Λ ∼ 10−2 in the quantum theory)

while having a gravitino mass in the 10TeV range. Furthermore (as discussed in the next

section) the quantum contribution to the CC is O(N Λ2

16π2 m2
3/2) where N is the number

of chiral multiplets in the theory. Thus we expect a broken supersymmetric minimum

F |S0 = F z|0 = 0, F T |0 6= 0, with a small negative cosmological constant −|V0| such that

|V0| ∼
m2

3/2

V ∼ O

(

N
Λ2

16π2
m2

3/2

)

≪ O(m2
3/2). (2.9)

It should also be stressed here that our framework does not need any ad hoc uplift terms

to get an acceptable value for the CC. This will come about as a result of the fine tuning

of the classical SUGRA CC against the quantum effects that are discussed below.

The curvature component relevant to the soft mass calculation in this model is RT T̄IJ̄ =
1
3KT T̄ ZIJ̄ +O(H2) so that using the standard expression for soft masses, given for example

in [16, 17], we have

m2
IJ̄ = m2

3/2ZIJ̄ − F T F T̄ RT T̄ IJ̄ ∼ O

(

m2
3/2

Λ2

16π2

)

≪ m2
3/2. (2.10)

Similarly both the Bµ and the trilinear couplings - the A-terms - are also suppressed.7 In

the next two sections we will consider the quantum effects.

3 Quadratic divergence issues and mSUGRA

It is well known that quadratic divergences are absent in (spontaneously broken) global

supersymmetry, but this is not really relevant for phenomenology for well-known reasons.

Any mechanism of supersymmetry breaking (such as say dynamical SUSY breaking) is

incomplete unless it is embedded within supergravity. Then one needs to confront the

problem of quadratic divergences. In the following we will discuss how the cosmological

constant and the soft supersymmetry breaking parameters get affected by these divergences.

3.1 The cosmological constant and the soft masses

To one-loop order but keeping only the O(Λ2) (where Λ is the cutoff) corrections we have

the following [18–20]) formulae for the potential (at a minimum) and the (unnormalized)

6In the analysis of [15] an α′ correction is also included in the Kaehler potential though it is not really

essential for the demonstration of the existence of a minimum as such. We can of course include this but

have avoided doing so explicitly for simplicity since it does not change the qualitative features that we are

discussing in this work.
7If we had fine-tuned the CC exactly to zero at the classical level we would have got zero for the soft

masses and the µ, Bµ and A terms as in the no-scale model.

– 7 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
3

soft mass terms.

V |0 = (FmF̄ n̄Kmn̄ − 3m2
3/2)

(

1 +
(N − 5)Λ2

16π2

)

+
Λ2

16π2
(m2

3/2(N − 1) − F T F̄ T̄ RT T̄ ), (3.1)

m2
IJ̄ = V |0ZIJ̄ + (m2

3/2ZIJ̄ − F T F T̄ RT T̄ IJ̄)

(

1 +
(N − 5)Λ2

16π2

)

− Λ2

16π2
[m2

3/2RIJ̄ + m3/2(F
T DT RIJ̄ + F T̄ DT̄ RIJ̄) + F T F T̄ (DT DT̄ RIJ̄

−R T̄
T̄ RT T̄ IJ̄ − R T

T RT T̄IJ̄ + R K
I RT T̄KJ̄)]. (3.2)

Here N is the total number of chiral scalar superfields. In writing these expressions we have

kept, in the one loop correction terms, the classical fine tuning values (2.8) of the F-terms.

In estimating these corrections we will take the cutoff to be

Λ ∼ MGUT ∼ MKK ∼ 1016GeV ∼ 10−2MP → Λ2

16π2
∼ 10−6M2

P . (3.3)

The first question that needs to be addressed is the fine-tuning of the cosmological constant.

With the classical fine tuning (2.8) and using RT T̄ ≃ 1
3(Nv+2)KT T̄ (where Nv is the number

of visible sector fields) we would obtain at one-loop a CC of order Λ2

16π2 m2
3/2(N −Nv −3) =

10−6m2
3/2M

2
P (h21 − 1). Since we need the number of complex structure moduli to be of

O(102) in order to be able to fine tune the classical CC, this one loop correction leads to a

CC (assuming that the gravitino is at least of order the SUSY mass splittings 102−3GeV )

that is a factor ∼ 1086 too large! Thus as we discussed before we need to change the

classical starting point which ignored the fact that there are quantum corrections.8 In

other words to cancel the CC to the leading order in NΛ2/16π2 we need to add corrections

to (2.8) and (2.9) such that (with MP = 1)

3m2
3/2 − FmF n̄Kmn̄ =

Λ2

16π2
(m2

3/2(N − 1 − (2 + Nv)) =
Λ2

16π2
m2

3/2(h21 − 1). (3.4)

Note that since the r.h.s. of this equation is positive the classical CC (the negative of the

l.h.s. ) would have to be negative. In this case there is no obstruction to getting a positive

squared mass for the T modulus and generically it will be O(m2
3/2).

The actual minimum around which we work in calculating the soft masses will also

change the values of the F-terms of the moduli from those given in (2.8) to the following

(with |F i| ≡
√

KīiF
iF ī):

|F T |=
√

3m3/2+O

(

h21
Λ2

16π2
m3/2

)

, |FS |.O

(

Λ

4π
m3/2

)

, |F z|.O

(

1√
h21

Λ

4π
m3/2

)

. (3.5)

We will thus assume that one can find such a minimum by adjusting fluxes and there

certainly is no obstruction to doing so.

Now let us calculate the soft masses by including the quantum corrections. The first

term in (3.2) has now been re-fine-tuned to zero. However the second term is no longer

8For a discussion of the consequences for string phenomenology of this refinetuning problem see [45].
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zero and there is an additional contribution from the third term. To calculate these we

need the curvatures derived from the Kaehler potential (2.1):

RT T̄ IJ̄ =
KT T̄ zIJ̄

T +T̄
+O(Φ2), RIJ̄KL̄ =

3

(T +T̄ )2
(zIJ̄zKL̄+zIL̄zKJ̄−zIKzL̄K̄)+O(Φ2)

RIJ̄ =
Nv + 1

T + T̄
zIJ̄ + O(Φ), DT RIJ̄ = O(Φ), DT DT̄ RIJ̄ = O(Φ)

R K
I RT T̄KJ̄ =

Nv + 1

(T + T̄ )3
zIJ̄ + O(Φ2).

So (given that the MSSM fields Φ have values that are highly suppressed < O(10−16)

relative to the Planck scale) we find from (3.2) on using (3.4) that the the largest quantum

contribution to the soft mass squared is

m
′2
IJ̄ ∼ (h21 − 2Nv)

Λ2

48π2
m2

3/2ZIJ̄ ∼ (h21 − 2Nv)10
−6m2

3/2ZIJ̄ , (3.6)

and is positive provided that h21 > 2Nv. It is also flavor diagonal. In fact it is precisely of

the form assumed by mSUGRA models of supersymmetry breaking and is easily obtained

for generic Calabi-Yau orientifold compactifications.

The flavor conserving two loop quantum corrections coming from fluctuations of light

fields that we will consider in the next section, are in fact of the same order provided that

the number of complex structure moduli is O(102). In fact since Nv is also of the same

order, this is a necessary condition to get positive squared masses. Of course the tuning

of the cosmological constant already requires the number of cycles in the compactification

manifold to be at least of this order. Thus this contribution is O(10−4m2
3/2). However if

this (3.6) had been flavor violating the model (even with the flavor conserving effect of the

next section) would have been in danger of being ruled out since the flavor violating effects

need to be down by a factor of around 10−3 compared to the flavor conserving one. Note

that the flavor conservation of the soft masses calculated in this section is entirely due to

the fact that the visible sector field space metric factorizes into a modulus dependent factor

and a matrix in generation space. This in turn is a reflection of the fact that all visible

fields are from a stack of D3 branes. This would not have been the case if the visible sector

came partially from D3 branes and partially from (wrapped) D7 branes for instance. Such

a general embedding would have resulted in a metric ZIJ̄ = f(M,M̄)zIJ̄ + g(M,M̄ )z′
IJ̄

where M denotes the set of moduli and the dilaton and zIJ̄ , z′
IJ̄

are in general different

matrices so that the curvature would not have been proportional to ZIJ̄ , and hence we

would have had flavor changing terms at an unacceptable level.

Nevertheless it should be noted that the above calculation of curvatures are done in the

linearized (in the complex structure moduli zα ) solution given in [10]. It is indeed possible

that the complete solution will yield a contribution to (3.6) that is not proportional to the

matrix ZIJ̄ and so in general will lead to fine tuning. For instance in general zIJ̄ would

be a function of the complex structure moduli zα, z̄β and so there would be a contribution

to the Ricci tensor in the MSSM directions of the form RIJ̄ ∼ Kα,β̄∂α∂β̄ZIJ̄ which is not

(in general) proportional to ZIJ̄ . This could in principle give, from the second line of (3.2)
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a contribution as large as the one in (3.6). In this case we need additional fine-tuning

to 1 part in 103 to achieve the necessary suppression of FCNC and this can be done by

appropriate choices of the fluxes which determine the complex structure moduli.

It should be noted that (given the suppression of classical soft terms in our model) (3.6)

by itself would give soft mass terms at an acceptable level provided that the gravitino

mass is a factor of 102 larger than the soft mass - i.e. we would need a gravitino with

m3/2 & 10TeV . This is typical of so-called AMSB scenarios where the classical terms are

“sequestered” [3] as is the case with our classical starting point (2.1). The point of our

discussion here is to show that the quadratic divergences that are inevitably present, give

a contribution which is competitive with the ‘AMSB’ effects.

As for the A terms, adding the quadratically divergent one-loop effects gives

AIJK = eKm/2 W ∗
m

|Wm|

{

F iDiyIJK

(

1 +
N − 5

16π2
Λ2

)

− Λ2

16π2
O(F T )

}

(3.7)

where the sum in the first term in parentheses excludes the T modulus (recall that the

classical contribution is suppressed since in the no-scale model it would be exactly zero while

here it is O(Λ2/16π2)). The second term consists of terms that are proportional to yIJK .

As shown in [10] the first term is proportional to yIJK and hence when (due to quantum

effects in our case) the F i are turned on, no significant flavor violating effects are generated.

3.2 Consistency issues

Let us now check what the cancellation of the one-loop contribution to the cosmological

constant implies for the F-terms of the moduli. Using (2.4) we have (assuming for simplicity

that there is only one NP term)

F T̄ = eK/2K T̄T DT W = eK/2K T̄T (−aAe−aT + KT W ) (3.8)

Note that in this formula as well as in the arguments in the rest of this subsection the values

of the moduli are understood to be taken at the local (negative CC) minimum of section II.

The requirement that the one loop CC contribution to the CC is cancelled then yields

3m2
3/2 − KT T̄ F T F T̄ =

2
√

3aℜAe−aT

k1/2(S + S̄)1/2(T + T̄ )1/2
m3/2 + O(e−2aT ) ∼ h21

Λ2

16π2
m2

3/2, (3.9)

where in the last relation we have used (3.4). This gives us an estimate of how large the

non-perturbative contribution (at the minimum) should be:

Ae−aT ∼ a−1(T + T̄ )1/2h21
Λ2

16π2
m3/2. (3.10)

Let us check now that this gives a reasonable value for a. First we need to estimate the value

of T . Using the fact that the Kaluza-Klein mass MKK in Planck units is 1/T ,9 we have

1

T
∼ MKK ∼ Λ ∼ 10−2 =⇒ T . O(102) (3.11)

9For a discussion of the scales involved in both the unwarped and warped cases see [46]. Note that we

are actually discussing a class of type IIB solutions where warping can be ignored. It is completely unclear

to us how to use the SUGRA formalism when warping is significant.
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Assuming A ∼ O(1) and m3/2 ∼ 10TeV ∼ 10−14MP from (3.10) we estimate a & O(1/10)

which is a reasonable value since it would correspond to condensing gauge groups10 of rank

N ∼ 10 − 100.

Let us ask how big the F-component of the complex structure moduli and the dilaton

can be. In the presence of both imaginary anti-self-dual (IASD) fluxes (in the terminology

of GKP [8]) and non-perturbative terms we have

F ᾱ = K ᾱβeK/2(DβWflux + KβAe−aT ) = K ᾱβeK/2(Iβ + KβAe−aT ) (3.12)

FS = K S̄SeK/2(DSWflux + KSAe−aT ) = K S̄SeK/2(I + KSAe−aT ) (3.13)

Here Iβ is an (2,1) flux and I is a (3.0) flux. Now the classical solution (in the absence of

NP terms) requires that these IASD fluxes are zero. In finding a minimum for the classical

potential that includes the non-perturbative terms such that the one-loop CC is cancelled,

it is clear that we should not turn on IASD fluxes, since these would generically give large

positive terms in the potential and violate the last two relations in (3.5). In that case using

the estimate (3.10) we have

F ᾱ ∼ K ᾱβKβ

k1/2(S + S̄)2aℜT
h21

Λ2

16π2
m3/2, (3.14)

F S̄ ∼ K S̄SKS

k1/2(S + S̄)2aℜT
h21

Λ2

16π2
m3/2. (3.15)

Finally we observe that for consistency these values of the F-terms of these moduli implies

that their masses are considerably lower than the string scale. This can be seen by imposing

the constraint that the mass of the scalar partner of the Goldstino should be of the order of

m3/2. Defining the unit vector in the Goldstino direction um ≡ Fm/
√

Kmn̄FmF n̄ we have

uT =
F T

√

F T FT (1 + ǫ2)
∼ eiφT

√

KT T̄ (1 + ǫ2)

uα =
Fα

√

F T FT (1 + ǫ2)
∼ ǫαeiφα

√

KT T̄ (1 + ǫ2)

where ǫα ≡ |Fα|/
√

F T FT and ǫ2 = ǫαǫα and we take α = 0, 1, . . . h12 with the index α = 0

identified with the dilaton S. So for the squared mass of the sGoldstino we have

umVmn̄un̄ =
KT T̄ VT T̄

1 + ǫ2
+

ǫαVαβ̄ǫβ̄

1 + ǫ2
∼ O(m2

3/2)

This tells us that ǫα ∼ m3/2/mα so that we have the result11 cd

Fα ∼
m3/2

mα
m3/2.

Comparing with (3.14), (3.15) we see that this implies mS ∼ mz ∼ 104m3/2.

10In the KKLT picture this would come from the gauge theory on seven-branes wrapping a 4-cycle in the

internal manifold.
11This has also been obtained in [47] though the argument there is different from the above and appears

to depend on global SUSY.
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3.3 µ and Bµ terms

The expression for the effective µ term (after integrating out the moduli) is given by (see

for example [16, 20] and references therein)

µIJ = eKmod/2µ̃IJ + m3/2XIJ − F̄ Ā∂ĀXIJ + O

(

Λ2

16π2
m3/2

)

. (3.16)

In this expression the second and third term are of the order of the supersymmetry breaking

but there is no reason for first term (which comes from the original superpotential) to be

of the same order - generically it would be O(1) in Planck units. That of course would be

a disaster since in that case there would be no electroweak symmetry breaking. This is the

well known µ problem of the MSSM.

In our string theory based model of gravity mediated SUSY breaking with the MSSM

located on D3 branes however µ̃ = 0 and the effective µ term emerges from the well-known

Giudice-Masiero effect [21]. As shown by Graña et al [10] µIJ = −F̄ ᾱ∂ᾱXIJ so using (3.14)

and the fact that the sum over α has h21 terms, we get

µ ∼ O

(

h2
21

aT

Λ2

16π2
m3/2

)

∼ 10−2m3/2, (3.17)

where we have used the value aT ∼ O(10) (see line after (3.11)) and h21 ∼ 3 × 102.

Also using the calculation of the Bµ term given in [10] we have

BµIJ = Vclassical|0XIJ ∼ O

(

h21
Λ2

16π2
m2

3/2

)

∼ 10−3m2
3/2, (3.18)

so that
Bµ

µ
∼ aT

h21
m3/2 ∼ 3 × 10−2m3/2. (3.19)

3.4 Gaugino mass

Let us now consider the gaugino masses. The general formula for these is

ma =
1

2
(ℜfa)

−1FA∂Afa(Φ), (3.20)

and we will only get a contribution if the gauge coupling function fa depends on a chiral

multiplet that acquires a non-vanishing F-term. In our case since the gauge theory on the

D3 branes is independent of the moduli of the internal manifold and so the gaugino mass

is suppressed relative to the gravitino mass. In particular the quadratic divergence in the

potential led us to shift the minimum resulting in the new F-term values (3.4). Since the

gauge coupling function on D3 branes depends (in the Einstein frame) on the dilaton this

gives a non-vanishing contribution (since f ∼ S ∼ 1/g2)

ma

g2
a

=
1

2
FS∂Sfa(S) ∼ O

(

h21
Λ2

16π2
m3/2

)

. 10−3m3/2. (3.21)
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3.5 mSUGRA parameters

As discussed above we need to choose the cutoff Λ ∼ 10−2 and we took h21 ∼ 3 × 102.

Taking m3/2 ∼ 104GeV we get reasonable soft parameters except that the gaugino masses

are too small. But as we shall see in the next section there is an ‘AMSB’ contribution to

the gaugino masses which is much larger than the mSUGRA contribution. Our mSUGRA

parameters are,

µ∼10−2m3/2∼100GeV, ms∼2×10−2m3/2∼200GeV,
Bµ

µ
∼ aT

h21
m3/2∼300GeV. (3.22)

Note that a somewhat larger value of the gravitino mass (say ∼ 30TeV as in typical ‘AMSB’

scenarios ) would also give acceptable values provided we take h21 to be a little larger for

example h21 ∼ 4−5×102. The gaugino masses however would still be of < O(100GeV ) and

hence if this is the only contribution the model would be ruled out on phenomenological

grounds. However as we discuss in the next section there are additional contributions.

4 SUSY breaking and AMSB

In the previous section we showed how mSUGRA like SUSY breaking terms arise at the

cutoff scale Λ, in a model which can be naturally embedded in a type IIB string theoretic

setup. These boundary conditions of mSUGRA need to be evolved down to the electro-weak

scale in order to evaluate the actual predictions of this set up for the MSSM parameters.

This calculation is just the same as in the usual mSUGRA set up and we will not go over it.

However there is a new contribution to any such theory that needs to be considered.

This is usually assumed to be due to conformal anomalies and is referred to as anomaly

mediated supersymmetry breaking (AMSB) [3–5, 22]. The most detailed SUGRA based

derivation of the gaugino mass is given in the last citation and (in our conventions) reads

ma

g2
a

= ℜ[F i∂ifa(Φ)| − 1

8π2
(b′am3/2 + caF

i∂iKm + 2TRF i∂i ln Zr)], (4.1)

where ca = T (Ga) −
∑

r Ta(r) and b′a = 3T (Ga) −
∑

r Ta(r) with T (Ga), Ta(r), being the

traces of a squared gauge group generator in the adjoint and a matter representation r

respectively. The sum over representations go over all states which are effectively massless

at the cut off scale. In our approximately no-scale model with the MSSM on a stack of D3

branes the contribution of the first term was given in (3.21). We also see that there is a

cancellation amongst the terms in the paranthesis in the second term in l.h.s. of (4.1) so

that we effectively get from this formula the same result as before, namely

ma

g2
a

∼ O(10−3m3/2). (4.2)

If correct this would mean that the gaugino masses are well below the experimental upper

limit, even for gravitino masses that are as high as 100TeV , which is the highest one can tol-

erate without seriously affecting the hierarchy. This would imply that type IIB string theory

with the MSSM on D3 branes can only give a split supersymmetry type of scenario. Thus
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we would need m3/2 ∼ 103TeV , giving gaugino masses ma ∼ 1TeV , but soft masses as well

as µ and Bµ/µ would then be O(10TeV ) and the Higgs squared mass would be fine tuned

(at a level of 1 part in 104). However as we will argue below this conclusion is not warranted.

The point is that as shown in [6] the arguments in [3–5, 22] need to be revised. Let us

briefly summarize this discussion. The most important point is that the the so-called Weyl

(or conformal) compensator chiral superfield C is a (non-propagating) field, and the theory

needs to have enough gauge freedom so that it can for instance be set equal to unity to get

the standard formulation of SUGRA. The Weyl anomaly at one-loop effectively prevents

this, and Kaplunovsky and Louis (KL) [23] showed by a careful and detailed calculation how

this anomaly could be cancelled thereby restoring the gauge symmetry. Their discussion

led to a corrected form for the gauge coupling function in superspace (at the cutoff scale

Λ)

Ha(Φ;Λ) = fa(Φ) − 3b′a
4π2

ln C − Ta(r)

4π2
ln(e−

1

3
KmZr)|holomorphic. (4.3)

Projecting the F-term of this gives us the formula

ma

g2
a

= ℜ[F i∂ifa(Φ)| − b′a
8π2

FC

C
− Ta(r)

4π2
F i∂i(ln(e−

1

3
KmZr)], (4.4)

where C,FC are the lowest and highest components of the Weyl compensator superfield.

The question is what is the value of the second term on the r.h.s. . As shown by KL, in the

Kaehler-Einstein frame (which is the correct ‘physical’ frame in which standard SUGRA

low energy results should be derived) F C

C = 1
3KiF

i. Putting this in (4.4) we have

ma

g2
a

= ℜHa(Φ;Λ)|F = ℜ[F i∂ifa(Φ)| − ca

8π2
F i∂iKm − Ta(r)

4π2
F i∂i(ln Zr)],

= O(10−3m3/2) −
b′a
8π2

m3/2 + O

(

Λ

4π
m3/2

)

. (4.5)

In the last line the first term is from (3.21), and we have used the values for the Kahler

potential and F-terms for our model from (2.3), (2.4), (3.14), (3.15). This is the correct

contribution from AMSB and indeed it gives a value for the gaugino masses (with m3/2 ∼
30TeV ) that is of the right order.

However as shown in [7] (DS) and elaborated on in [6] there is an additional contribu-

tion which has nothing to do with Weyl anomalies but is a quantum effect in the effective

action. This arises as follows. The gauge coupling function at the high (GUT) scale Λ is

given by the superfield (4.3). At a low scale µ the one-loop beta function formula gives

Ha(Φ;µ) = Ha(Φ;Λ) − b′a
8π2

ln
Λ

µ
. (4.6)

Now assume that there is an intermediate threshold which is generated by a superfield

X (and its F-term) acquiring non-zero values in the ground state of the theory. The

appropriate replacement of (4.6) in the Wilsonian effective action at the low scale µ is

Ha(Φ,X;µ) = Ha(Φ;Λ) − ba

8π2
ln

X

µ
− b′a

8π2
ln

Λ

X
(4.7)
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where ba is the beta-function coefficient below the scale set by the vev X0 of X. It may

be obtained by integrating the one-loop beta function above and below the scale set by X

and then using holomorphy. In effect this is the usual argument that the superspace gauge

coupling function is one-loop exact. This is basically the argument given in DS [7] except

that there the scale µ was not introduced and X0 was eventually taken to zero. However

that would clearly introduce infra-red divergences and in any case we should be in the

Higgs phase where X has a non-zero expectation value and as DS argued their discussion

really applies only in the Higgs phase. It should also be noted that this formula is exact

for the Wilsonian coupling function. A similar formula is given in [24] in the context of

gauge mediated supersymmetry breaking and is used in [5] to argue for what is often called

deflected anomaly mediation in the literature.12 Indeed as pointed out in both [7, 24] the

X dependence in this formula follows from holomorphy and the necessity of reproducing

the correct chiral anomaly from states that have been integrated out to get the effective

theory at scales below that set by X.

Taking the F-term of this and replacing the field and its F-term by their ground state

values, we have for the gaugino mass at the scale µ → X0

ma

g2
a

= ℜHa(Φ;Λ)|F − ba − b′a
8π2

FX

X0
.13 (4.8)

In our model the only possible threshold below the GUT scale is the weak scale set by the

Higgs field itself. Thus we should take the gauge neutral field X to be the gauge neutral

combination of the two MSSM Higgs superfields, i.e. we may put X2 = HuHd. In effect

this was what was done by Dine and Seiberg in their toy model outlining this general idea

in [7] and the above mentioned chiral anomaly is in the global symmetry under which both

Hu and Hd rotate by the same phase and the quark and lepton fields rotate by half the

opposite phase - a symmetry which is explicitly broken by the µ term. X will acquire

a non-zero value X0 in the physical Higgs vacuum of the theory. The value which goes

into (4.8) is thus
FX

X0
=

1

2

(

F u

vu
+

F d

vd

)

, (4.9)

where we have set the vevs of the charged components of the Higgs fields to zero and vu(vd)

are the vevs of the neutral Higgses H0
u(H0

d ). Now the F-terms may be computed from (2.5)

and (2.2). The relevant term in the superpotential is W ∼ µHuHd and in the Kaehler

12Formulae for gaugino masses, given in the literature on GMSB, which have corrections which effectively

involve D2X etc (where D is the supercovariant spinor derivative) would necessarily take us to a higher

derivative theory and in any case are not relevant for the Wilsonian coupling function that we are concerned

with here. In other words to the extent that we confine ourselves to a two derivative Wilsonian action, the

formula (4.7) is exact.
13We note that the calculation is similar to that given in [24] the main difference being that the effective

messenger scale is the TeV scale and there is no messenger sector. It should also be noted that the GMSB

constraint F X/X2

0 < 1 which applies from the necessity of ensuring non-negative messenger squared masses

does not apply here. First of all there are no messengers but more importantly the mass formulae are given

by the supergravity expression (1.3) and not by global SUSY formulae which are used in the GMSB context

where the gravitino mass contribution maybe ignored.
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potential it is K ∼ Z(HuH̄u + HdH̄d). Then we have (with the indices for Hu,Hd → u, d)

F ū = eK/2K ūu(∂uW + KuW ) = eK/2K ūuµ̃Hd + m3/2H̄u ≃ m3/2vu, (4.10)

F d̄ = eK/2K d̄d(∂dW + KdW ) = eK/2K d̄dµ̃Hu + m3/2H̄d ≃ m3/2vu. (4.11)

As is usual in the MSSM we have chosen the vevs to be real (this may in fact be done

without loss of generality) and we have ignored the ‘mu’ term contribution since it is

suppressed in our class of models. Thus we have

FX

X0
= m3/2. (4.12)

Using this and (3.18) in (4.8) we get

ma

g2
a

(µ) = − ba

8π2
m3/2. (4.13)

The above discussion is in fact the usual treatment of RG evolution that is used in the

presence of thresholds. In our case this threshold is at the soft mass scale which is in fact

the same as the Higgs scale v. Above this scale all superparticles would contribute to the

evolution, while below one might expect only the standard model particles to contribute.

This for instance is the assumption made in extrapolating from the standard model to the

GUT scale to get unification, by accounting for the superpartners of the standard model

particles which give a similar threshold effect. Note that these masses are of the same

order of magnitude as the squark/slepton masses. For completeness we quote the values

obtained for each separate gaugino

m3 = −7
α3

4π
m3/2 (4.14)

m2 = −19

6

α2

4π
m3/2 (4.15)

m1 =
41

10

α1

4π
m3/2 (4.16)

In the usual discussion of AMSB it is claimed that there is a contribution from Weyl

anomalies to the soft masses as well [3, 5]. This argument is based on the following

reasoning. One starts with the assertion that the wave function renormalization should

undergo the following replacement

Z

(

Φ, Φ̄; ln
Λ

µ

)

→ Z

(

Φ, Φ̄; ln
Λ|C|

µ

)

(4.17)

in supergravity. Then one has for the squared soft masses

m2 = − lnZ|θ2θ̄2 = −1

4
|FC |2 d2 ln Z

d ln Λ2
. (4.18)

However not only is there no justification for the replacement (4.17), making Z dependent

on C would in fact violate the Weyl gauge invariance of supergravity which is essential for

the consistency of the formalism. In fact as discussed above, the addition of a ln C term
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to the gauge coupling function by KL [23] was designed to restore the Weyl invariance of

the theory. The replacement (4.17) on the other hand would result in breaking the Weyl

invariance making C a propagating field, and therefore it is incorrect. Formula (4.18) is

therefore invalid.

Nevertheless there is a contribution to the soft mass that comes from a quantum effect

that has nothing to do with Weyl anomalies. This was pointed out in [7] and the mechanism

is a consequence of the formula (4.7). In the Higgs branch of the theory The radiatively

generated soft mass at a scale µ → X0

m2
Φ(X0) = 2

∑

a

ca(r)

(

αa
X0

4π

)2

(ba − b
′a)

|FX |2
|X0|2

.14 (4.19)

Here the sum is taken over the three gauge group factors and αa = ga2/4π. Also ca(r) is

the quadratic Casimir of the gauge group representation r of the observable field (squark

or slepton). Then using (4.12) we have the contribution to the soft masses,

m2
Φ(X0) = 2

∑

a

ca
Φ

(

αa
X0

4π

)2

(ba − b′a)m2
3/2. (4.20)

As we argued earlier, above the scale X0 all superparticles would contribute to the evolu-

tion, while below one might expect only the standard model particles to contribute. This

gives b3−b′3 = 4, b2−b′2 = 25/6, b1−b′1 = 5/2. We also have the values (with Q,L standing

for the quark, lepton doublets respectively) c3.2.1
Q = 4

3 , 3
4 , 1

60 ; c2,1
L = 3

4 , 3
20 ; c3,1

ũ = 4
3 , 4

15 and

c3.1
d̃

= 4
3 , 1

15 . The formula then gives the following generation independent contribution to

the masses of the squark and sleptons.

m2
Q =

[

32

3

(α3

4π

)2
+

25

4

(α2

4π

)2
+

1

12

(α1

4π

)2
]

m2
3/2, (4.21)

m2
ũ =

[

32

3

(α3

4π

)2
+

4

3

(α1

4π

)2
]

m2
3/2, (4.22)

m2
d̃

=

[

32

3

(α3

4π

)2
+

1

3

(α1

4π

)2
]

m2
3/2, (4.23)

m2
L =

[

25

4

(α2

4π

)2
+

3

4

(α1

4π

)2
]

m2
3/2, (4.24)

m2
ẽ = 3

(α1

4π

)2
m2

3/2. (4.25)

Let us now compare with the contribution from the quadratic divergence effects with

h21 ∼ 3 − 5 × 102. For the squark masses the contribution from (3.22), is somewhat

smaller than the values in (4.21)–(4.23) but it is an order of magnitude larger than the

contribution (4.24), (4.25) to the slepton masses.

Note that the equations (4.14) to (4.16) and (4.21) to (4.25) give masses in the

O(103GeV ) to O(102GeV ) range, provided we choose, as in the case of the usual pre-

sentation of AMSB phenomenology, a large mass for the gravitino (∼ 30TeV ). Unlike

14Again this is very similar to the argument given in [24] for the corresponding GMSB calculation with

similar caveats as in the gaugino case.
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that case however we do not require an additional mechanism to get non-negative squared

slepton masses even though here we actually have such a contribution, namely (3.6), which

as we observed above is much larger than this ‘AMSB’ contribution. Note that these give

masses in the O(103GeV ) to O(102GeV ) range with the above choice for the gravitino mass.

5 Summary of phenomenology and conclusions

In this paper we have studied in detail the SUSY breaking phenomenology of a classically

‘no-scale’ like or ‘sequestered’ model (in the sense that the classical soft masses are sup-

pressed relative to the gravitino mass) based on type IIB string theory with the MSSM

coming from open string fluctuations on a stack of D3 branes. While there does not yet

exist a complete chiral theory of this sort (with all moduli stabilized) it is plausible that

once various technical difficulties are overcome such a model can indeed be constructed. If

that turns out to be the case then its qualitative phenomenology would be that discussed

in this paper. Actually it should be clear from the arguments that we have made, that this

kind of phenomenology is quite generic for theories which are of this type (i.e. with sup-

pressed classically generated soft terms). Thus we expect that similar phenomenological

results emerge from a large class of string theoretic SUGRA models such as for instance

IIB models with the MSSM on D7 branes.

These models have features that are similar to those found in all three standard mech-

anisms of SUSY mediation.

• Origin of SUSY breaking in moduli and transmitted by gravity as in mSUGRA.

• Soft parameters are due to quantum effects as in AMSB and GMSB.

• Gaugino masses mainly from ‘AMSB’.

• m3/2 & 10TeV as in AMSB.

Such models have just two parameters that can be adjusted - the gravitino mass and the

(integer) h21 (or in more general models the sum h21+h11). The cutoff is almost completely

fixed once we demand that it should be higher than the scale at which the gauge couplings

appear to unify, but below the string scale. Since at this point unification is the only

concrete (albeit rather tenuous) evidence for supersymmetric physics, we strongly believe

that it should be taken as an input. Since the cutoff should be definitely less than the

string/Planck scale this limits us to the range 1016GeV < Λ < 1018GeV . Furthermore as

the string scale is expected to be somewhat below the Planck scale (perhaps ≤ 1017GeV ) we

are actually restricted to Λ ∼ 1016GeV = 10−2MP , which is the value that we have used.

Also as we have seen in section 3 the effective perturbative parameter is h21Λ
2/16π2M2

P ∼
h2110

−6 with the above value of Λ. As we argued above, with a gravitino mass of around

30TeV , the number of cycles in the Calabi-Yau manifold should not be much larger than

102 since the µ-term has to be well below 1TeV (see equation (3.18)) . On the other hand

we cannot lower the gravitino mass below about 10TeV since in that case the gaugino
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masses (for the SU(2) × U(1) group) would be too low. Thus we see that this class of

models must have

h21 & 3 − 5 × 102, m3/2 ∼ 10 − 30TeV. (5.1)

The universal scalar masses and the µ and Bµ terms (at the unification scale Λ) are

µ ∼ Bµ

µ
∼ ms ∼ 100 − 500GeV, (5.2)

and the gaugino masses (which are naturally computed at the MSSM scale via the ‘AMSB’

calculation of [6, 7] (see equations (4.14), (4.15), (4.16)) are

m1 ∼ 30 − 80GeV, m2 ∼ 40 − 100GeV, m3 ∼ 400 − 1000GeV.

Finally we should stress that so far there is no concrete string theoretic construction of

the MSSM (living on D3 branes in type IIB or in any other string theory set up) with all the

moduli stabilized. In this paper we have assumed that the SUSY breaking phenomenology

of non-chiral constructions that has been discussed in the literature [10, 25] will hold for

chiral models as well. Of course as we discussed before it is possible that these models will

have FCNC terms that are proportional to h21, like the flavor conserving terms, and in

this case one would need a fine tuning of one part in 103 to suppress them.

Even with such additional fine-tuning it seems that this class of models is still the

minimal possible and least fine-tuned one that can be embedded in string theory. Suppose

for example there is a mSUGRA model with all moduli stabilized which does not have

FCNC at the classical level. One would still have FCNC terms, but since the classical

contribution to the scalar squared mass is now O(m2
3/2) the quantum contribution will be

down by a factor h21
Λ2

16π2 ∼ 10−4 and can be ignored. However now the gravitino mass

is low ∼ 100GeV so there is a fine-tuning factor (according to the work of Douglas and

collaborators [26]) O(
m3/2(low)

m3/2(high))
6 = O(10−12) when the high value is taken to be ∼ 10TeV

as in the model discussed here. As for GMSB models, one might expect that the same

factor applies, however it has been argued that such models are on a different branch [27].

Be that as it may, GMSB requires an additional sector - the so-called messenger sector -

compared to the class of models discussed here.

It is clearly important to find detailed constructions that incorporate the MSSM within

a string theory context where all moduli can be stabilized.15 Even though one may not

be able to make precise predictions (since by changing the fluxes one can make changes

to the masses and couplings) the physics that we have discussed above would then be a

qualitative prediction of string theory for LHC physics. This is so in the sense that the

class of models that we have here are the minimal possible in terms of fine-tuning, and

having just the sectors (namely a visible MSSM or GUT sector and a moduli sector) that

necessarily have to be present.

15For recent progress on such constructions see [48–50].
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A On the relation to mirage mediation and large volume scenarios

The phenomenological consequences of the class of models discussed in this paper have a

certain superficial resemblence to the so-called mirage mediation models of [28] (see also [29]

for a recent variant of this) where the classical (plus nonperturbative) contribution is of

the same order as the ‘AMSB’ one. However these models rely on the KKLT toy model

with an uplift term. There are several problems with taking this model seriously for

phenomenological purposes. Firstly (as pointed out in [30]) the logic of deriving a four

dimensional theory from a ten dimensional theory requires that one starts from a classical

supersymmetric vacuum of the ten-dimensional theory which enables one to organize the

fluctuations around that point in 4D supergravity multiplets, and will then necessarily

give a 4D N = 1 SUGRA theory. If one starts with supersymmetry broken at the string

level (even if the scale is suppressed by warping) there is simply no way of deriving a four

dimensional supergravity. In fact the potential one gets is a runaway one for the Kaehler

moduli - implying decompactification. The potential that is usually used is based on the

assumption that one can add a non-perturbative term to the superpotential before one

adds the Dbar term - but this is an inversion of the logic since the string theory starting

point did not have such a non-perturbative term to begin with (especially if they arise from

low energy gauge theoretic effects) while the Dbar brane is added at the string theory level

i.e. in the ten dimensional theory.

If we ignore this, the uplift term is an explicit breaking of the N = 1 four-dimensional

supersymmetry (although in 10 dimensions it is a spontaneaous breaking caused by Dbar

branes) at an intermediate scale
√

m3/2MP ∼ 1011GeV . The Dbar brane is located far

down a throat so that its effective tension and hence the supersymmetry breaking, is

warped down from the string/Planck scale to the above scale by the warp factor eAmin ∼
√

m3/2/MP (see [28] equation (19)). If the MSSM/GUT branes are in the bulk (as is

effectively the case in [28]) as opposed to being in the infra-red end of a throat region,

this appears to give quantum effects that result in terms O(m3/2MP Λ2/16π2) (rather than

O(m2
3/2Λ

2/16π2) as in this paper) in the potential. This would seem to introduce large

corrections to soft masses etc when Λ ∼ MGUT. However the overlap of the wave function

of the MSSM states which are located at the UV end of the throat with the SUSY breaking

fields at the IR end of the throat is exponentially suppressed. This results in an effective

mass splitting at the UV end ∆m2 ∼ e2Aminm3/2MP = m2
3/2. and hence the quadratically

divergent quantum contribution is again of the same order as in this paper. Another possi-

bility would be to have the MSSM brane far down a throat region so that the effective cut
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off Λ is also warped down to an intermediate scale Λ2
eff =

m3/2

MP
Λ2, so that the estimate of the

quantum contribution to the potential is again O(m3/2MP Λ2
eff/16π2) = O(m2

3/2Λ
2/16π2).

In this case also the corrections to soft masses etc. will not significantly change the classical

contributions. However in such a situation it is not entirely clear how to obtain a GUT

theory since the effective cut off is far below the GUT scale though in the corresponding

5-dimensional scenario a possible resolution has been offered in [31]. Also in the string

theoretic case the derivation of the effective four dimensional supergravity in the presence

of significant warping has not yet been entirely resolved (for the problems associated with

this and progress towards a resolution of this question see [32, 33]). It should also be men-

tioned that the mirage mediation scenario is not necessarily tied to having an anti-brane

at the IR end of the throat. This could in principle be replaced by a conventional SUSY

breaking sector at the IR end of a warped throat (for some discussion of this see [34]).16

One might of course avoid large corrections by taking the cutoff Λ to be much smaller

than the GUT scale and this appears to be the case in the large volume scenario (LVS)

discussed in [15]. In that and in subsequent work based on it, it is shown that in the absence

of fine tuning a large volume scenario emerges (from GKP-KKLT type constructions) where

the string scale is an intermediate scale (around 1012GeV ). In this case there is a broken

SUSY minimum with negative CC (exactly as required for the classical construction of this

paper) and the authors use the uplift term of KKLT to lift the minimum to a small positive

value. However the phenomenology appears to be insensitive to the uplift term (see for

example [35]). But as we’ve argued in this paper, at this point in time, supersymmetric

grand unification is the main piece of evidence for supersymmetry and should be taken

seriously in model building. This can be achieved in the LVS scenario (if one fine-tunes

the flux generated superpotential as we’ve done in this work) but then the quadratically

divergent corrections that we have discussed in this paper will become relevant. A detailed

discussion of this as well as an extention of the phenomenology discussed in this paper to

the case when the standard model is located on D7 branes, will appear in future work.
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